Section 2.4 Solutions:

#1-22: Find the derivative of each exponential function

1)
$$y = e^{3x}$$

Rule needed

$$f(x) = c e^{g(x)}$$

$$f'(x) = cg'(x)e^{g(x)}$$

Where "c" is a constant (number without a letter)

Answer $\frac{dy}{dx} = 3e^{3x}$

3)
$$f(x) = e^{4x+5}$$

Rule needed $f(x) = ce^{g(x)}$ $f'(x) = cg'(x)e^{g(x)}$ Where "c" is a constant (number without a letter)

$$C = 1$$

$$G(x) = 4x + 5$$

$$G'(x) = 4$$

$$F'(x) = 1 \cdot 4 \cdot 4$$

$$F'(x) = 4 \cdot 4 \cdot 5$$

$$F'(x) = 4 \cdot 4 \cdot 5$$

Answer $f'(x) = 4e^{4x+5}$

5)
$$f(t) = e^{t^2 + 3t}$$

Rule needed $f(x) = ce^{g(x)}$ $f'(x) = cg'(x)e^{g(x)}$ Where "c" is a constant (number without a letter)

$$\begin{aligned} \zeta &= 1 \\ \Im(\tau) &= T^{2} + 3T \\ \Im'(\tau) &= 2T + 3 \\ f'(\tau) &= 1 \cdot (2T + 3) e^{T^{2} + 3T} \\ f'(\tau) &= (2T + 3) e^{T^{2} + 3T} \end{aligned}$$

answer:
$$f'(t) = (2t+3)e^{t^2+3t}$$

7)
$$f(x) = 2e^{4x}$$

Rule needed $f(x) = ce^{g(x)}$ $f'(x) = cg'(x)e^{g(x)}$ Where "c" is a constant (number without a letter)

$$C = 2$$

$$\Im(x) = 4x$$

$$\Im'(x) = 4$$

$$f'(x) = 2 \cdot 4 e^{4x}$$

$$f'(x) = 8e^{4x}$$

answer: $f'(x) = 8e^{4x}$

9)
$$y = x^2 e^x$$

$$f(x) = ce^{g(x)}$$
$$f'(x) = cg'(x)e^{g(x)}$$

answer: y' =

Where "c" is a constant (number without a letter)

Also need the product rule as both factors have an x.				C =	1 9(x)=X 9'(x)=1 1.1.ex	
First factor	χc	Seco	nd Factor	۲ ک		
Derivative	ZΧ	<mark>Deri</mark> v	vative	\mathcal{C}^{\times}	B	
cross multiply top down √ ² C ≁			<mark>cross multiply bottom up</mark> て人で ^ス			

11)
$$k(y) = (y+2)e^{3y}$$

 $f(x) = ce^{g(x)}$ $f'(x) = cg'(x)e^{g(x)}$ Where "c" is a constant (number without a letter)

Also need the product rule as both factors have an x.

First factor $\checkmark \checkmark \leftarrow 2$	Second Factor e^{3}
Derivative	Derivative Jezy
<mark>cross multiply top down</mark> (ペャン)・ うe	cross multiply bottom up し、C 3 ど

$$K'(y) = (y+z) \cdot 3e^{3y} + 1e^{3y}$$

$$K'(y) = e^{3y} (y+z) \cdot 3+1$$

$$K'(y) = e^{3y} (3y+6+1)$$

$$K'(y) = e^{3y} (3y+7)$$

 $C = 1 \quad g(y) = 3y$ g(y) = 3

ANSWARNE (JUMMANNA)

13)
$$f(x) = xe^{5x}$$

 $f(x) = c e^{g(x)}$ $f'(x) = cg'(x)e^{g(x)}$ Where "c" is a constant (number without a letter)

			C = 1	9(x)=	- 5x
Also need the prod	uct rule as both factors	have an x.	<u> </u>	J.CX1].5e ^{5X}
First factor	X	Second Factor	25	X	
Derivative		Derivative	5e	SX	
cross mi	ultiply top down X ° 5e 5×	cross n	nultiply b \€S⊁	ottom up	

$$f'(\chi) = \chi \circ 5e^{5\chi} + 1e^{5\chi}$$

$$f'(\chi) = e^{5\chi}(5\chi + 1)$$

$$f'(\chi) = e^{5\chi}(5\chi + 1)$$

answer: f'(x

15)
$$f(t) = \frac{t^2}{e^t}$$

Rule needed for the "e" $f(x) = ce^{g(x)}$

$$f'(x) = cg'(x)e^{g(x)}$$

Where "c" is a constant (number without a letter)

Also need the quotient rule because of the division.

17)
$$f(x) = \frac{x+2}{e^x}$$

$$f(x) = ce^{g(x)}$$
$$f'(x) = cg'(x)e^{g(x)}$$

Where "c" is a constant (number without a letter)

Also need the quotient rule because of the division.

$$\frac{\text{Denominator}}{\text{Derivative}} \xrightarrow{\mathcal{C}^{\chi}}{\mathcal{C}^{\chi}} \xrightarrow{\text{Numerator}} \xrightarrow{\chi + 2}{\mathcal{C}^{\chi}} \xrightarrow{\text{Derivative}} \xrightarrow{\text{Derivative}} \xrightarrow{\text{Cross multiply bottom up}} (\chi + 2)e^{\chi}$$

$$f'(\chi) = \frac{\sqrt{e^{\chi} - e^{\chi}(\chi + 2)}}{(e^{\chi})^{2}} \xrightarrow{\left(e^{\chi}\right)^{2}} \xrightarrow{\left(e^{$$

19) $f(x) = 3^x$

Rule needed $f'(x) = c \ln (a)g'(x)a^{g(x)}$

$$C = 1$$

$$Q = 3$$

$$Q(x) = \chi$$

$$Q'(x) = 1$$

$$f'(x) = 1 \cdot L_n(3) \cdot 1 \cdot 3^{\chi}$$

$$er: f'(x) = \ln(3) 3^{\chi}$$

$$f'(x) = L_n(3) 3^{\chi}$$

answe

21) $f(x) = 3^{5x}$

Rule needed $f'(x) = c \ln (a)g'(x)a^{g(x)}$

$$C = 1$$

$$Q = 3$$

$$\Im(\chi) = 5 \chi$$

$$\Im'(\chi) = 5$$

$$f'(\chi) = \int L_{n}(3) \cdot 5 \cdot 3^{5\chi}$$
answer: $f'(x) = 5 \ln(3) \cdot 5^{5\chi}$

$$f'(\chi) = 5 \ln(3) \cdot 5^{5\chi}$$

#23-38: Find the derivative of each logarithmic function

23)
$$y = \ln(4x)$$

Rule needed f(x) = cln[g(x)] $f'(x) = \frac{cg'(x)}{g(x)}$ *c* is a constant

25) $y = \ln(8x^2)$

Rule needed f(x) = cln[g(x)] $f'(x) = \frac{cg'(x)}{g(x)}$ *c* is a constant

answer:
$$\frac{dy}{dx} = \frac{2}{x}$$

$$G'(x) = 8x^{2}$$

$$G'(x) = 16x$$

$$\frac{dy}{dx} = \frac{1 \cdot 16x}{8x^{2}}$$

$$\frac{dy}{dx} = \frac{2}{x} \frac{16x}{8x^{2}}$$

$$\frac{dy}{dx} = \frac{2}{x}$$

27)
$$f(x) = \ln(2x - 3)$$

Rule needed f(x) = cln[g(x)] $f'(x) = \frac{cg'(x)}{g(x)}$ *c* is a constant

$$C = 1$$

$$G(\chi) = 2\chi - 3$$

$$G'(\chi) = 2$$

$$f'(\chi) = \frac{1 \cdot 2}{2\chi - 3}$$
answer: $f'(\chi) = \frac{2}{2\chi - 3}$

$$f'(\chi) = \frac{2}{2\chi - 3}$$

29) y = 3x ln(5x)

$$y_{l} = 3 + 3Ln(sx)$$

= $3(1 + Ln(sx))$
or $3(Ln(sx)+1)$

answer: $y' = 3(\ln(5x) + 1)$

31) $f(y) = y^2 \ln(3y)$

33)
$$f(x) = log_3(x)$$

 $f(x) = clog_b[g(x)]$ $f'(x) = \frac{cg'(x)}{\ln(b)g(x)}$ c is a constant b > 0

$$C = 1$$

$$b = 3$$

$$C(x) = X$$

$$C'(x) = 1$$

answer:
$$f'(x) = \frac{1}{\ln(3)x}$$

$$f'(x) = \frac{|\cdot|}{\ln(3) x}$$

 $f'(x) = \frac{1}{\ln(3) x}$

35)
$$f(x) = log_3(2x + 7)$$

 $f(x) = clog_b[g(x)]$ $f'(x) = \frac{cg'(x)}{\ln(b)g(x)}$ c is a constantb > 0

$$\begin{aligned} \zeta &= 1\\ b &= 3\\ O(x) &= 2x + 7\\ O'(x) &= 2\\ f'(x) &= 2\\ f'(x) &= \frac{1 \cdot 2}{(n(3)(2x+7))}\\ f'(x) &= \frac{2}{(n(3)(2x+7))}\\ f'(x) &= \frac{2}{(n(3)(2x+7))}\end{aligned}$$

#37-42:

a) Find all values of x where the tangent line is horizontal

b) Find the equation of the tangent line to the graph of the function for the values of x found in part a.

37) $y = e^{x^2}$

a) Find derivative, then solve derivative equal to zero.

Rule needed for the derivative

$$f(x) = c e^{g(x)}$$

$$f'(x) = cg'(x)e^{g(x)}$$

Where "c" is a constant (number without a letter)

37a) *answer*: x = 0

37b) *y* = 1

#37-42:

a) Find all values of x where the tangent line is horizontal

b) Find the equation of the tangent line to the graph of the function for the values of x found in part a.

39) $y = 3xe^x$

a) Find derivative, then solve derivative equal to zero.

Rule needed for the "e" $f(x) = ce^{g(x)}$ $f'(x) = cg'(x)e^{g(x)}$ Where "c" is a constant (number without a letter)

Also need the product rule as both factors have an x.

b)
$$X = -1$$

 $y = f(-1) = 3(-1)e^{-1}$
 $= -3e^{-1}$
 $= -3/e^{-1}$
POINT $(-1, -3/e)$
Slope M=0
All hor; zontal lines
 $39b) y = -3/e^{-1}$ Maye Slope M=0

39a)
$$x = -1$$

a) Find all values of x where the tangent line is horizontal

b) Find the equation of the tangent line to the graph of the function for the values of x found in part a.

41) $y = xe^{2x}$

a) Find derivative, then solve derivative equal to zero.

Rule needed for the "e" $f(x) = ce^{g(x)}$ $f'(x) = cg'(x)e^{g(x)}$ Where "c" is a constant (number without a letter)

Also need the product rule as both factors have an x.

b)
$$\chi = -\frac{1}{2}$$

 $y = f(-1/2) = -\frac{1}{2}e^{2\cdot -\frac{1}{2}}e^{2\cdot -\frac{$

41b) $y = \frac{-1}{2e}$ *answer*: 41*a*) $x = -\frac{1}{2}$ POINT (-1/2, -1/2e) Slope M=0 ~~ (- 1/2e) = O(X-(=)) $S + \frac{1}{2e} = 0$ $\sqrt{=}^{-1}/2e$