Section 2.4 Solutions:
\#1-22: Find the derivative of each exponential function

1) $y=e^{3 x}$

> Rule needed
> $f(x)=c e^{g(x)}$
> $f^{\prime}(x)=c g^{\prime}(x) e^{g(x)}$

Where " c " is a constant (number without a letter)

$$
\begin{array}{r}
c=1 \\
g(x)=3 x \quad g^{\prime}(x)=3 \\
\frac{d y}{d x}=1 \cdot 3 e^{3 x} \\
\frac{d y}{d x}=3 e^{3 x}
\end{array}
$$

Answer $\frac{d y}{d x}=3 e^{3 x}$
3) $f(x)=e^{4 x+5}$

> Rule needed
> $f(x)=c e^{g(x)}$
> $f^{\prime}(x)=c g^{\prime}(x) e^{g(x)}$

Where " c " is a constant (number without a letter)

$$
\begin{aligned}
& c=1 \\
& g(x)=4 x+5 \\
& g^{\prime}(x)=4
\end{aligned}
$$

$$
f^{\prime}(x)=1.4 e
$$

$$
4 x+5
$$

$$
f^{\prime}(x)=4 e^{4 x+5}
$$

5) $f(t)=e^{t^{2}+3 t}$

Rule needed

$$
\begin{aligned}
& f(x)=c e^{g(x)} \\
& f^{\prime}(x)=c g^{\prime}(x) e^{g(x)}
\end{aligned}
$$

Where " c " is a constant (number without a letter)

answer: $f^{\prime}(t)=(2 t+3) e^{t^{2}+3 t}$
7) $f(x)=2 e^{4 x}$

Rule needed

$$
\begin{aligned}
& f(x)=c e^{g(x)} \\
& f^{\prime}(x)=c g^{\prime}(x) e^{g(x)}
\end{aligned}
$$

Where " c " is a constant (number without a letter)

answer: $f^{\prime}(x)=8 e^{4 x}$
9) $y=x^{2} e^{x}$

Rule needed for the "e"

$$
\begin{aligned}
& f(x)=c e^{g(x)} \\
& f^{\prime}(x)=c g^{\prime}(x) e^{g(x)}
\end{aligned}
$$

Where " c " is a constant (number without a letter)

11) $k(y)=(y+2) e^{3 y}$

Rule needed for the "e"

$$
\begin{aligned}
& f(x)=c e^{g(x)} \\
& f^{\prime}(x)=c g^{\prime}(x) e^{g(x)}
\end{aligned}
$$

Where " c " is a constant (number without a letter)

Also need the product rule as both factors have an x .

$$
K^{\prime}(y)=(y+2) \cdot 3 e^{3 y}+1 e^{3 y}
$$

$$
K^{\prime}(y)=e^{3 y}[(y+2) \cdot 3+1]
$$

Answer

13) $f(x)=x e^{5 x}$

Rule needed for the "e"

$$
\begin{aligned}
& f(x)=c e^{g(x)} \\
& f^{\prime}(x)=c g^{\prime}(x) e^{g(x)}
\end{aligned}
$$

Where " c " is a constant (number without a letter)

Also need the product rule as both factors have an x .

$$
C=1
$$

First factor	Second Factor
Derivative	es x
cross multiply top down	
$\times 05 e^{5 x}$	$5 e^{5 x}$

$$
f^{\prime}(x)=x \cdot 5 e^{5 x}+1 e^{5 x}
$$

answer: $f^{\prime}(x)=e^{5 x}(5 x+1)$
15) $f(t)=\frac{t^{2}}{e^{t}}$

Rule needed for the "e"

$$
\begin{aligned}
& f(x)=c e^{g(x)} \\
& f^{\prime}(x)=c g^{\prime}(x) e^{g(x)}
\end{aligned}
$$

Where " c " is a constant (number without a letter)

Also need the quotient rule because of the division.

Denominator e^{T}	Numerator T^{2}	
Derivative e^{T}	Derivative $\quad 2 T$	
cross multiply top down $2 T e^{T}$	cross multiply bottom up	$T^{2} e^{\top}$

$$
f^{\prime}(T)=\frac{2 T \hat{k}-T^{2} \hat{\phi} t}{\left(e^{T}\right)^{2}}
$$

answer $f^{\prime}(t)=\frac{-t^{2}+2 t}{e^{t}}=\frac{-t(t-2)}{e^{t}}$

17) $f(x)=\frac{x+2}{e^{x}}$

Rule needed for the " e "

$$
\begin{aligned}
& f(x)=c e^{g(x)} \\
& f^{\prime}(x)=c g^{\prime}(x) e^{g(x)}
\end{aligned}
$$

Where " c " is a constant (number without a letter)

Also need the quotient rule because of the division.

Denominator e^{x}	Numerator $x+2$	
Derivative e^{x}	Derivative	
cross multiply top down	e^{x}	cross multiply bottom up

$$
\begin{array}{r}
f^{\prime}(x)=\frac{1 e^{x}-e^{x}(x+2)}{\left(e^{x}\right)^{2}} \\
f^{\prime}(x)=\frac{e^{x}(1-(x+2))}{e^{x} \cdot e^{x}} \\
f^{\prime}(x)=\frac{1-x-2}{e^{x}} \\
f^{\prime}(x)=\frac{-x-1}{e^{x}}
\end{array}
$$

19) $f(x)=3^{x}$

Rule needed
$f^{\prime}(x)=c \ln (a) g^{\prime}(x) a^{g(x)}$

answer: $f^{\prime}(x)=\ln (3) 3^{x}$

$$
f^{\prime}(x)=\operatorname{Ln}(3) 3^{x}
$$

21) $f(x)=3^{5 x}$

Rule needed
$f^{\prime}(x)=c \ln (a) g^{\prime}(x) a^{g(x)}$

answer: $f^{\prime}(x)=5 \ln (3) 3^{5 x}$

$$
f^{\prime}(x)=5 \ln (3) 3^{5 x}
$$

\#23-38: Find the derivative of each logarithmic function
23) $y=\ln (4 x)$

Rule needed
$f(x)=c \ln [g(x)]$
$f^{\prime}(x)=\frac{c g^{\prime}(x)}{g(x)}$
c is a constant

25) $y=\ln \left(8 x^{2}\right)$

Rule needed
$f(x)=c \ln [g(x)]$
$f^{\prime}(x)=\frac{\operatorname{cg\prime }(x)}{g(x)}$
c is a constant

answer: $\frac{d y}{d x}=\frac{2}{x}$

27) $f(x)=\ln (2 x-3)$

Rule needed

$$
f(x)=\operatorname{cln}[g(x)]
$$

$f^{\prime}(x)=\frac{c g \prime(x)}{g(x)}$
c is a constant

answer: $f^{\prime}(x)=\frac{2}{2 x-3}$

$$
f^{\prime}(x)=\frac{2}{2 x-3}
$$

29) $y=3 x \ln (5 x)$

answer: $y^{\prime}=3(\ln (5 x)+1)$
30) $f(y)=y^{2} \ln (3 y)$

$$
\begin{aligned}
& \text { Rule needed } \\
& f(x)=\operatorname{cln}[g(x)] \\
& f^{\prime}(x)=\frac{\operatorname{cg}(x)}{g(x)}
\end{aligned}
$$

$$
c \text { is a constant }
$$

Also need product rule

| First factor y^{2} | Second Factor $\operatorname{Ln}(3 y)$ |
| :--- | :--- | :--- |
| Derivative | Derivative \quad y |
| cross multiply top down | |
| $y^{2}, \frac{1}{y}=y$ | cross multiply bottom up |
| $2 y \ln (3 y)$ | |

$$
\begin{aligned}
& f^{\prime}(y)=y+2 y \ln (3 y) \\
& f^{\prime}(y)=y(1+2 \ln (3 y))
\end{aligned}
$$

answer $f^{\prime}(y)=y(2 \ln (3 y)+1)$

$$
\begin{aligned}
& \text { OR } \\
& f^{\prime}(y)=y(2 \ln (3 y)+1)
\end{aligned}
$$

33) $f(x)=\log _{3}(x)$

$$
\begin{aligned}
& f(x)=\operatorname{cog}_{b}[g(x)] \\
& f^{\prime}(x)=\frac{c g^{\prime}(x)}{\ln (b) g(x)}
\end{aligned}
$$

c is a constant

$$
b>0
$$

$$
f^{\prime}(x)=\frac{1.1}{\ln (3) x}
$$

answer: $f^{\prime}(x)=\frac{1}{\ln (3) x}$

$$
f^{\prime}(x)=\frac{1}{\ln (3) x}
$$

35) $f(x)=\log _{3}(2 x+7)$

$$
\begin{aligned}
& f(x)=\operatorname{clog}_{b}[g(x)] \\
& f^{\prime}(x)=\frac{c g^{\prime}(x)}{\ln (b) g(x)}
\end{aligned}
$$

c is a constant

$$
b>0
$$

$$
f^{\prime}(x)=
$$

$$
f^{\prime}(x)=\frac{2}{\ln (3)(2 x+7)}
$$

\#37-42:
a) Find all values of x where the tangent line is horizontal
b) Find the equation of the tangent line to the graph of the function for the values of x found in part a.
37) $y=e^{x^{2}}$
a) Find derivative, then solve derivative equal to zero.

Rule needed for the derivative

$$
\begin{aligned}
& f(x)=c e^{g(x)} \\
& f^{\prime}(x)=c g^{\prime}(x) e^{g(x)}
\end{aligned}
$$

Where " c " is a constant (number without a letter)

$g^{\prime}(x)=2 x$

$$
2 x e^{x^{2}}=0
$$

$$
\begin{aligned}
\frac{2 x}{2} & =\frac{0}{2} \\
x & =0
\end{aligned}
$$

$\begin{array}{ll}\text { 37a) answer: } x=0 & \text { 37b) } y=1\end{array}$
\#37-42:
a) Find all values of x where the tangent line is horizontal
b) Find the equation of the tangent line to the graph of the function for the values of x found in part a.
39) $y=3 x e^{x}$
a) Find derivative, then solve derivative equal to zero.

Rule needed for the "e"
$f(x)=c e^{g(x)}$
$f^{\prime}(x)=c g^{\prime}(x) e^{g(x)}$
Where " c " is a constant (number without a letter)

Also need the product rule as both factors have an x .

b)

$$
\begin{aligned}
& x=-1 \\
& y=f(-1)=3(-1) e^{-1} \\
&=-3 e^{-1} \\
&=-3 / e 1
\end{aligned}
$$

Point ($-1,-3 / e$)
Slope $m=0$
All horizontal lines
39a) $x=-1$ $\sin _{30} y=3 / 2$ have Slope $m=0$

$$
\begin{aligned}
& y-(-3 / e)=0(x-(-1)) \\
& y+3 / e=0 \\
&-3 / e-3 / e \\
& \text { Answer } y=-3 / e
\end{aligned}
$$

a) Find all values of x where the tangent line is horizontal
b) Find the equation of the tangent line to the graph of the function for the values of x found in part a.
41) $y=x e^{2 x}$
a) Find derivative, then solve derivative equal to zero.

Rule needed for the " e "

$$
\begin{aligned}
& f(x)=c e^{g(x)} \\
& f^{\prime}(x)=c g^{\prime}(x) e^{g(x)}
\end{aligned}
$$

Where " c " is a constant (number without a letter)

Also need the product rule as both factors have an x .

| First factor | Second Factor $e^{2 x}$ |
| :--- | :--- | :--- |
| Derivative | Derivative $2 e^{2 x}$ |
| cross multiply top down | |
| $x \cdot 2 e^{2 x}$ | cross multiply bottom up |

$$
\begin{aligned}
& y^{\prime}=2 x e^{2 x}+1 e^{2 x} \\
& \begin{array}{l}
y^{\prime}=e^{2 x}(2 x+1) \\
e^{2 x}(2 x+1)=0
\end{array} \\
& e^{2 x}=0 \\
& \text { no Solution } \\
& x=-1 / 2
\end{aligned}
$$

b)

$$
\begin{aligned}
& x=\frac{-1}{2} \\
& y=f(-1 / 2)=\frac{-1}{2} e^{2 \cdot-1 / 2} \\
& y=\frac{-1}{2} e^{-1} \\
& y=\frac{-1}{2} \cdot \frac{1}{e}=\frac{-1}{2 e}
\end{aligned}
$$

Point ($-1 / 2,-1 / 2 e)$
Slope $m=0$

$$
\begin{aligned}
y-(-1 / 2 e) & =0\left(x-\left(-\frac{1}{2}\right)\right) \\
y+\frac{1}{2 e} & =0 \\
-\frac{1}{2 e} & =\frac{1}{2 e} \\
\text { Suer } y & =-1 / 2 e)
\end{aligned}
$$

Answer

